

Gulliver BSF Series

Low NOx One Stage Gas Burners

BS1F	16		52	kW
BS2F	35	÷	91	kW
BS3F	65	÷	200	kW
BS4F	110		250	kW

The Riello Gulliver BSF series of one stage gas burners, is a complete range of products developed to respond to any request for light industrial processes like bakery ovens, spray painting ovens, small steam or thermal boilers and all applications which require a reliable, user-friendly industrial product with enhanced performance and specific functions.

The Gulliver BSF series is available in four different models, with an output ranging from 16 to 250 kW, divided in four different structures.

All the models use the same components designed by Riello for the Gulliver series and have the same ventilation system and overall dimensions as the previous one stage gas models.

The burners are fitted with a microprocessor-based burner safety control box which supplies indication of operation and diagnosis of fault cause.

This new series can operates on 50 or 60 Hz and a Voltage 220 - 230 Volt (dual frequency).

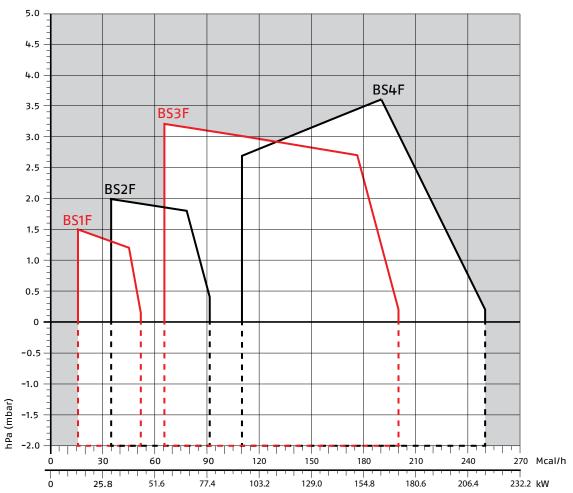
All these burners are conform to the EN 676 Standard (Forced draught gas burners) and to European Directives for EMC, Low Voltage and Gas Appliance. For depressurised working field see EN 746-2 Standard.

All the Gulliver BSF burners are fired before leaving the factory.

Technical Data

MODEL			BS1F	BS2F	BS3F	BS4F		
Burner opera			One stage					
Modulation r	atio at max. output							
Servomotor		type						
		run time s						
Heat output		kW	16 ÷ 52	35 ÷ 91	65 ÷ 200	110 ÷ 250		
		Mcal/h	13.8 ÷ 44.7	30.1 ÷ 78.3	55.9 ÷ 172	94.6 ÷ 215		
Working temperature °C		°C min./max.		0/	40	-		
FUEL/AIR DATA		-						
G20 gas	net calorific value	kWh/Nm³		1	0			
_	gas density	kg/Nm³		0.	71			
	gas delivery	Nm³/h	1.6 ÷ 5.2	3.5 ÷ 9.1	6.5 ÷ 18.9	11 ÷ 24.6		
G25 gas	net calorific value	kWh/Nm³			.6			
Ü	gas density	kg/Nm³			 78			
	gas delivery	Nm³/h	1.9 ÷ 6	4 ÷ 10.6	7.6 ÷ 22	12.8 ÷ 28.6		
LPG gas	net calorific value	kWh/Nm³			.8			
8	gas density	kg/Nm³			02			
	gas delivery	Nm³/h	0.6 ÷ 2	1.3 ÷ 3.5	2.5 ÷ 7.3	4.3 ÷ 9.5		
Fan		type		entrifugal with fo				
Air temperat	ure	max °C			0			
ELECTRICAL DA								
Electrical sup		Ph/Hz/V	1/50-60/220-230 (±10%)					
	ctrical supply	Ph/Hz/V						
Control box	спсаг зарргу	type	MG569					
Total electric	al nower	kW	0.135 (50 Hz)	0.155 (50 Hz)	0.355 (50 Hz)	0.420 (50 Hz)		
iotal electric	ai powei	KVV	0.165 (60 Hz)	0.200 (60 Hz)	0.485 (60 Hz)	0.600 (60 Hz)		
Auxiliary elec	trical power	kW	•	_	_	-		
Protection le	· · · · · · · · · · · · · · · · · · ·	IP		X)D			
Fan motor	electrical power	kW	0.	09	0.15	0.25		
	rated current	Α	0.6 (50 Hz)	0.7 (50 Hz)	1.6 (50 Hz)	1.9 (50 Hz)		
			0.75 (60 Hz)	0.9 (60 Hz)	2.2 (60 Hz)	2.7 (60 Hz)		
	start up current	А	2.4 (50 Hz) 3.0 (60 Hz)	2.8 (50 Hz) 3.6 (60 Hz)	6.4 (50 Hz) 8.8 (60 Hz)	7.6 (50 Hz) 10.8 (60 Hz)		
	protection level	IP	J.0 (00 HZ)			10.8 (00 112)		
Ignition tran								
igilition tian	Sidiffier	type V1 - V2			- 8 kV			
Onevetien		<u> </u>	l m t m		· 12 mA	2/. b\		
Operation EMISSIONS		<u> </u>	inte	ermittent (at least	Lone Stop every	24 11)		
			61			74		
Noise levels	sound pressure	dB (A)	61	62	66	71		
<u></u>	sound power	W	-					
Gas G20	CO emission	mg/kWh	20	10	20	10		
	N0x emission	mg/kWh	75	70	75	65		
APPROVAL								
Directive			2006	5/42 - 2009/142 - 3		95 EC		
Conforming t	.0		EN 676 - EN 12100					
Certification				CE-0085	5AQ0409			

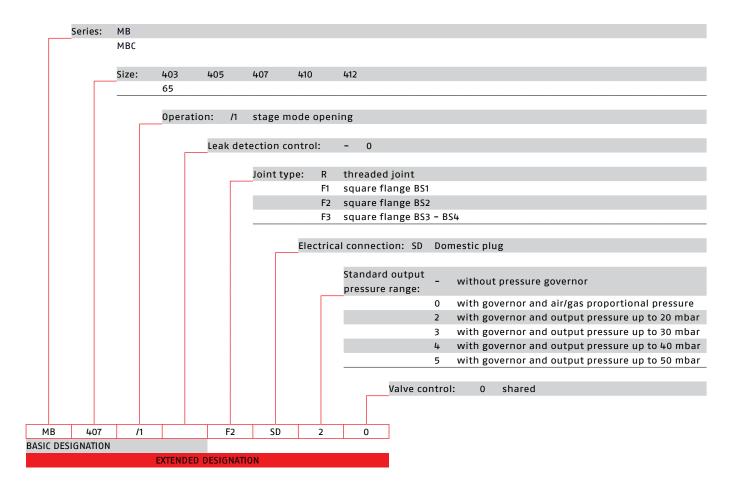
Reference conditions:


Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 0 m a.s.l. - Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

3

Firing Rates


Useful working field for choosing the burner

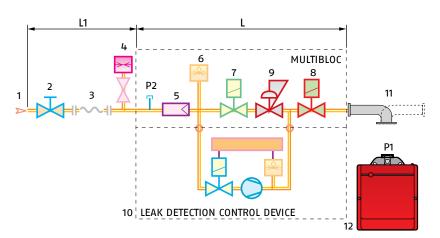
Test conditions conforming to EN676 Temperature: 20°C Pressure: 1013,5 mbar Altitude: 0 m a.s.l.

Gas train

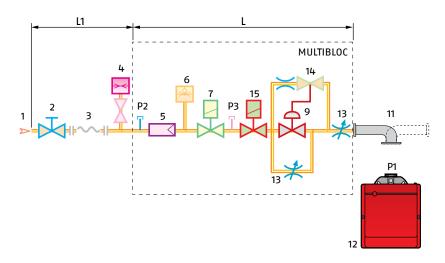
GAS TRAIN DESIGNATION

GAS TRAINS

The burners are set for fuel supply from either the right or left hand sides.

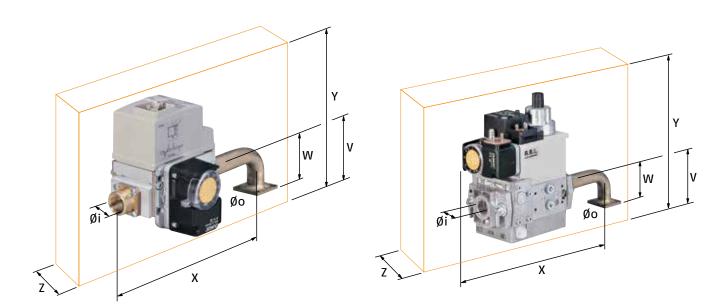

Depending on the fuel output and the available pressure in the supply line, you should check the correct gas train to be adapted to the system requirements.

The gas train is Multibloc type, containing the main components in a single unit.


Except for the MBC 65/1 model, a valve seal control (as accessory) can be fitted to the Multibloc gas trains.

The MBC 65/1 gas train can be fitted only to the left of the burner.

MB 405/1 - 407/1 - 410/1 - 412/1

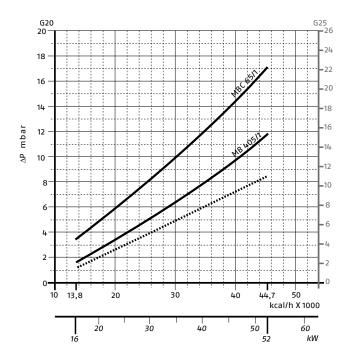

MBC 65/1

Gas train installed on the burner

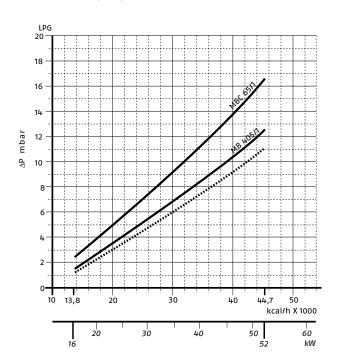
- 1 Gas input pipework 2 Manual valve
- 3 Anti-vibration joint
- 4 Gas pressure gauge
- 5 Filter
- 6 Gas pressure switch
- 7 Safety valve
- Adjustment solenoid:
 firing delivery adjustment (rapid opening)
 maximum delivery adjustment (slow opening)
- 9 Pressure adjuster
- 10 Leak detection device for valves 7 and 8 (accessory)
- 11 Gas train-burner adapter
- 12 Burner
- 13 Shutter with adjustment screws
- 14 Pressure regulator setting device
- 15 Regulation solenoid
- P1 Combustion head pressure
- P2 Upstream pressure from the filter
- P3 Upstream pressure from the control valve
- L Gas train supplied separately
- L1 Installer's responsability

The dimensions of the gas trains vary depending on their construction features. The following table shows the dimensions of the gas trains that can be fitted to Gulliver BS burners, intake diameter and the coupling flange to the burner.

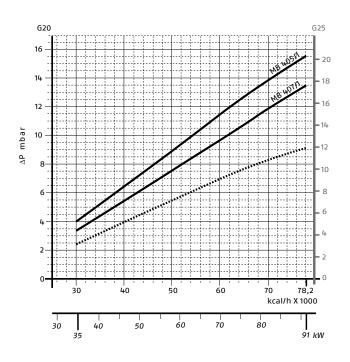
GAS TRAIN									
MODEL	CODE	Ø in	Ø out	X mm	Y mm	W mm	Z mm	V mm	mbar max*
MBC 65/1	3970570	1/2"	FLANGE 1	232	126	45	122	31	65
MB 405/1	3970546	1/2"	FLANGE 1	246	186	45	120	46	300
MB 405/1	3970547	3/4"	FLANGE 2	236	186	47	120	46	300
MB 407/1	3970544	3/4"	FLANGE 2	236	186	47	120	46	300
MB 407/1	3970548	3/4"	FLANGE 3	236	186	47	120	46	300
MB 410/1	3970549	1" 1/4	FLANGE 3	259	215	47	145	55	300
MB 412/1	3970550	1" 1/4	FLANGE 3	259	215	47	145	55	300

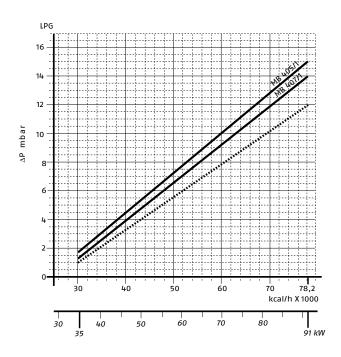

^{*} max inlet gas pressure (mbar)

Pressure Drop Diagram

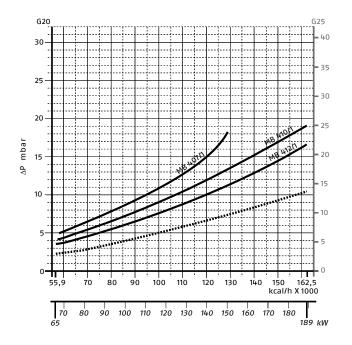

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

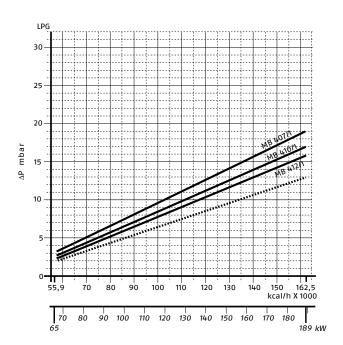
The value thus calculated represents the minimum required input pressure to the gas train.


BS1F (NATURAL GAS)

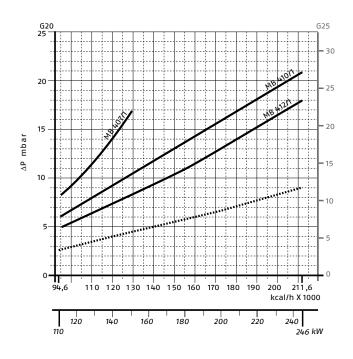

BS1F (LPG)

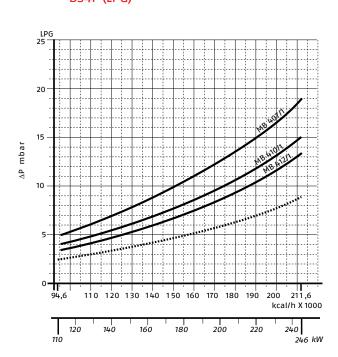
BS2F (NATURAL GAS)


BS2F (LPG)


Combustion head + gas trainCombustion head

RIELLO


BS3F (NATURAL GAS)


BS3F (LPG)

BS4F (NATURAL GAS)

BS4F (LPG)

For pressure levels different from those indicated above, please contact Riello Burners Technical Office. In LPG plants, Multibloc gas trains do not operate below 0°C.

They are only suitable for gaseous LPG (liquid hydrocarbons destroy the seal materials).

Combustion head + gas train

^{- -} Combustion head

GAS TRAIN				
CODE	MODEL	BURNER MODEL	OUTPUT	PLUG AND SOCKET
3970545	MB 403/1 - F2SD 20	BS1F	≤ 45 kW *	•
3970546	MB 405/1 - F1SD 20	BS1F	-	•
3970570	MBC 65/1 - F1SD 20	BS1F	-	•
3970547	MB 405/1 - F2SD 20	BS2F	-	•
3970544	MB 407/1 - F2SD 20	BS2F	-	•
3970548	MB 407/1 - F3SD 20	BS3F - BS4F	≤ 150 kW *	•
3970549	MB 410/1 - F3SD 20	BS3F - BS4F	-	•
3970550	MB 412/1 - F32D 20	BS3F - BS4F	-	•

Key to layout

* with natural gas

Selecting the Fuel Supply lines

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line.

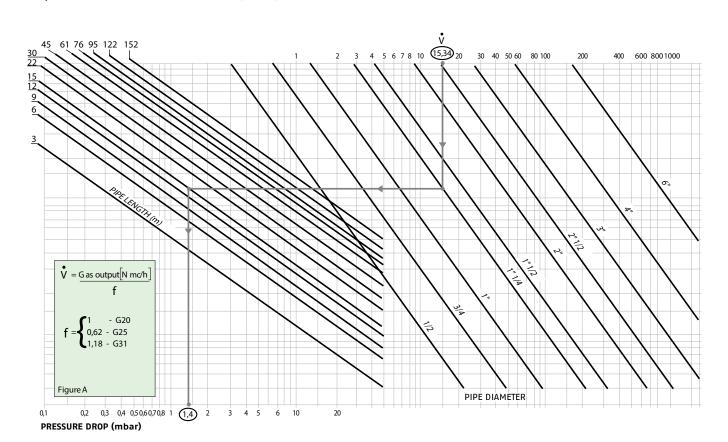
The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale ($\mathring{\mathbf{V}}$), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example: - gas used G25


gas outputpressure at the gas meter 20 mbar

gas line lengthconversion coefficient0.62

(see figure A)

- equivalent methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51 \end{bmatrix} = 15.34 \text{ mc/h} \\ 0.62 \end{bmatrix}$

- -once the value of 15.34 has been identified on the output scale ($\mathring{\mathbf{V}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);
- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;
- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

Ventilation

The different ventilation circuits always ensure low noise levels with high performance of pressure and air delivery, inspite of their compact size.

The burners are fitted with an adjustable air pressure switch, conforming to EN 676 standards.

Air suction

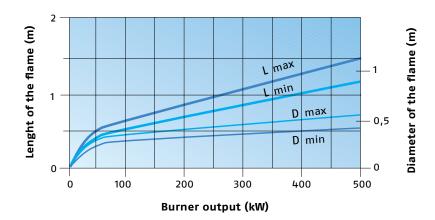
Air pressure switch

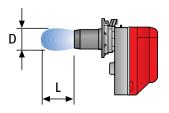
Combustion Head

The combustion head in Gulliver BSF burners is the result of an innovative design, which allows combustion with low polluting emissions, while being easy to adapt to all the various types of boilers and combustion chambers.

Thanks to the use of a mobile coupling flange, the penetration of the head into the combustion chamber can be adjusted.

Simple adjustment allows the internal geometry of the combustion head to be adapted to the burner output.

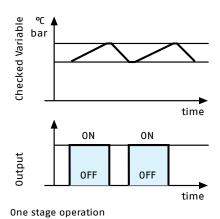

Combustion head



Mobile flange

RIELLO

DIMENSIONS OF THE FLAME



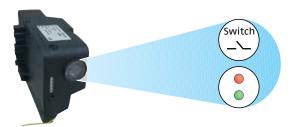
Example:
Burner thermal output = 350 kW;
L flame (m) = 1.2 m (medium value);
D flame (m) = 0.6 m (medium value)

Operation

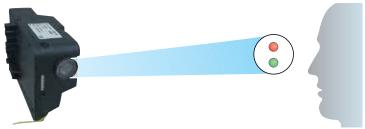
BURNER OPERATION MODE

All these models are one stage operation.

All Gulliver BSF series burners are fitted with a new microprocessor control panel for the supervision during intermittent operation. For helping the commissioning and maintenance work, there are two main elements:



The lock-out reset button is the central operating element for resetting the burner control and for activating / deactivating the diagnostic functions.


The multi-color LED is the central indication element for visual diagnosis and interface diagnosis.

Both elements are located under the transparent cover of lock-out reset button, as showed below.

There are two diagnostic choices, for indication of operation and diagnosis of fault cause:

- visual diagnosis:

- interface diagnosis:

By the interface adapter and a PC with dedicated software.

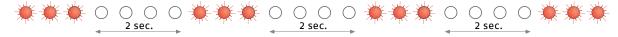
Indication of operation

In normal operation, the various statues are indicated in the form of colour codes according to the table below.

Diagnosis of fault causes

After lock-out has occurred, the red signal lamp is steady on.

In this status, the visual fault diagnosis according to the error code table can be activated by pressing the lock-out reset button for > 3 seconds.


The control box sends a sequence of pulses that are repeated at 2 second intervals.

The interface diagnosis (with adapter) can be activated by pressing again the lock-out button for > 3 seconds.

Color code table					
Operation statues	Color code				
Stand-by	Led off				
Pre-purging	🔅 Green				
Ignition phase	🔅 Green				
Flame 0K	Green				
Post purge					
Undervoltage, built-in fuse	O Led off				
Fault, alarm	* Red				

Example of blinks sequence:

○ LED off

Error code table

Blink code	Possible cause of fault
2 blinks	No flame at the end of safety time: - faulty or soiled gas valves - faulty ionisation probe - poor adjustment of burner, no gas - faulty ignition - neutral / phase exchange
3 blinks	Air pressure switch does not close or is already closed before heat demand: - faulty air pressure switch - air pressure switch incorrectly regulated
4 blinks	Presence of flame: - in stand-by position - with thermostat of heat demand in idle or working position - during pre-purge - during post-purge
6 blinks	Loss of air pressure: - during pre-purge - during or after safety time
7 blinks	Loss of flame during operations after n°3 attempts of re-cycle: - faulty or soiled gas valves - faulty ionisation probe - short circuit between ionisation probe and earth of the burner - poor adjustment of burner, no fuel

The MG569 digital control box gives some other advantages:

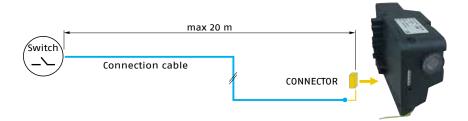
Post ignition (during safety time)

The spark ignition is present during all safety time.

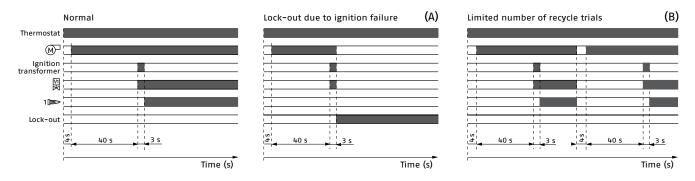
Adjustable post purge

The Post-purge is a function that maintains air ventilation even after the burner is switched off.

Post-purge time can be set to a maximum of 6 minutes.


This function can be activated and set in a very easy way by pressing repeatedly the reset button; after 5 seconds the control box automatically shows the minutes set by the red LED flashing (1 pulse = post-ventilation for 1 minute).

If during post-purge there is a new request for heat, it is halted and a new operating cycle starts.


The control box leaves the factory with the setting 0 minutes (no post-ventilation).

Remote lock-out reset

The "Remote lock-out reset" is a function that allows to reset the control-box operation from a remote position. In the burner packages will be included a particular connector to remote the reset signal. The maximum length of connection must be 20 m.

START UP CYCLE

- (A) Lock-out is shown by a led on the appliance.
- (B) Total number of recycle trials is 3

Correct operation

Os Start of heat demand the burner begins the ignition cycle

0s-4s The burner is in stand-by

4s-44s Pre-purge with opened air damper

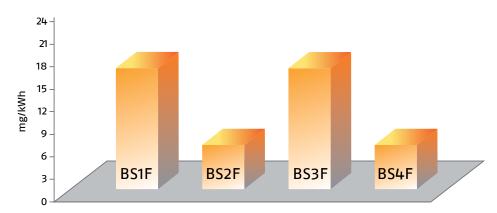
44s Ignition

Lock-out due to ignition failure

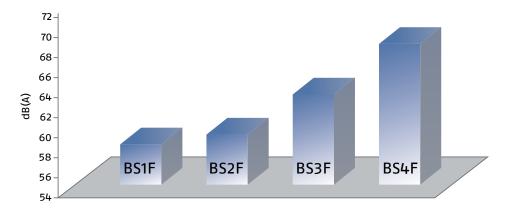
If the flame does not light within the safety limit (~ 3s) the burner locks-out.

Re-cycle

The burner permits maximum three repetitions of complete ignition cycle if there is flame failure during operation. The burner goes in safety shut-down within one second.


The final action at the last trial following at last flame failure is a lock-out.

The burners in the Gulliver BSF series guarantee controlled combustion, reducing emissions of both CO and NOx, this combustion control is due to the recirculation of the combustion products in the chamber (thanks to different combustible air flow speeds) and to the fuel staging technique (thanks to the special geometry of the gas nozzles).

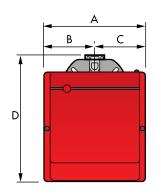


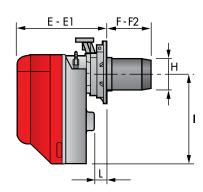
CO EMISSIONS (gas G20)

60

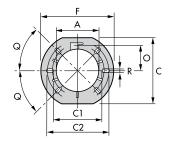
NOISE EMISSIONS

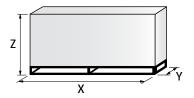
The emission data have been measured in the various models at maximum output, in conformity with EN 676 standard.


Special attention has been paid to noise reduction. All models are fitted with sound-proofing material inside the cover.



Overall Dimensions (mm)


These models are distinguished by their reduced size, in relation to the outputs achieved, which means they can be fitted to any boiler on the market.

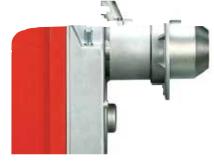

MODEL	Α	В	С	D	Е	E1	F	F2	Н	T	L
BS1F	234	122	122	295	230	276	116	70	89	210	41
BS2F	255	125.5	125.5	325	238	252	114	100	106	230	45
BS3F	300	150	150	391	262	280	128	110	129	285	45
BS4F	300	150	150	392	278	301	168	145	137	286	45

BURNER - BOILER MOUNTING FLANGE

MODEL	Α	С	C1	C2	F	0	Q	R
BS1F	89	167	140	170	192	66	45°	11
BS2F	106	167	140	170	192	66	45°	11
BS3F	129	201	160	190	216	76.5	45°	11
BS4F	137	203	170	200	218	80.5	45°	11

PACKAGING

MODEL	Χ	Υ	Z	kg
BS1F	395	278	350	10
BS2F	405	298	375	11
BS3F	450	345	440	15
BS4F	510	345	440	16.5


Installation Description

Installation, start up and maintenance must be carried out by qualified and skilled personnel.

The burner is set in the factory on standard calibration (minimum output).

If necessary adjustments can be made on the basis of the maximum output of the boiler. All operations must be performed as described in the technical handbook supplied with the burner.

The mobile flange allows adapting the length of the combustion head to the combustion chamber (flame inversion or 3 smoke cycles) and to the thickness of the boiler panel.

BURNER SETTING

The air damper position can be adjusted without removing the burner cover.

Head setting is easy and aided by a graduated scale; a test point allows reading the air pressure in the combustion head.

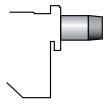
Gulliver BSF burners are fitted with an air pressure switch which, in accordance with EN 676 standards, can be adjusted by the installer using a graduated selector, on the basis of the effective working conditions.

MAINTENANCE AND ELECTRICAL CONNECTIONS

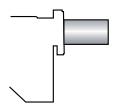
Maintenance is easily solved because the combustion head can be disassemblyed without having to remove the burner and gas train from the boiler.

The 7-pole socket is incorporated in the control box, the 6-pole socket for connection to the gas train is already connected to the equipment and fixed to the outside of the burner.

The 7-pin plug is also supplied for connection to the boiler.



Burner accessories


EXTENDED HEAD KIT

Burners standard head can be transformed into "extended head" versions by using the special kit. Here the KITS available for the various burners are listed, showing the original and the extended lengths.

BURNER	STANDARD HEAD LENGTH (mm)	EXTENDED HEAD LENGTH (mm)	CODE
BS2F (long)	100 ÷ 114	170 ÷ 180	3001007
BS2F (extra long)	100 ÷ 114	270 ÷ 280	3001008
BS3F	110 ÷ 128	267 ÷ 282	3001009
BS4F	145 ÷ 168	302 ÷ 317	3001016

ALTERNATIVE COMBUSTION HEAD KIT

This kit can be used to prevent combustion instability which could arise with particular heat generators.

To extend the adaptability of Gulliver BSF burners to any sort of application, alternative combustion heads have been developed.

These heads cause a very limited increase in NOx emissions, due to the slower air flow.

BURNER	CODE
BS1F	3001059
BS2F	3001064
BS3F	3001060
BS4F	3001070

PC INTERFACE KIT

To connect the control box to a personal computer for the transmission of operation, fault signals and detailed service information, an interface adapter with PC software are available.

BURNER	CODE
BS1F - BS2F - BS3F - BS4F	3002731

7-PIN PLUG KIT

If necessary a 7-pin plug kit is available (in packaging of n. 5 pieces).

BURNER	CODE
BS1F - BS2F - BS3F - BS4F	3000945

LPG KIT

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table.

BURNER	STANDARD HEAD CODE	EXTENDED HEAD CODE
BS1F	3001003	3001003
BS2F	3001004	3001004
BS3F	3001005	3001005
BS4F	3001011	3001011

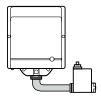
TOWN GAS KIT

For burning Town Gas, a special kit is available to be fitted to the combustion head on the burner, as shown in the following table.

BURNER	STANDARD HEAD CODE (*)	EXTENDED HEAD CODE (*)	
BS1F	3002727	-	
BS2F	3002728	3002728	
BS3F	3002729	3002729	

(*) Without CE certification

GROUND FAULT INTERRUPTER KIT



A "Ground fault interrupter kit" is available as a safety device in case of electrical system fault. It is supplied with burners with pin plug.

BURNER	CODE
BS1F - BS2F - BS3F - BS4F	3001180

(*) Without CE certification

MULTIBLOC ROTATION KIT

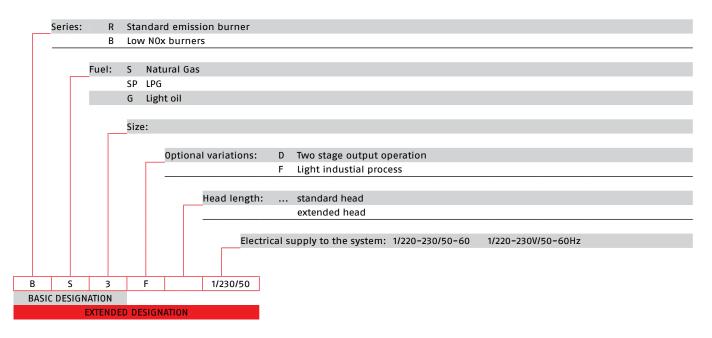
There is a special kit available that can be used to install the burner turned 180°. This kit is designed to ensure the gas train valve properly.

BURNER	CODE
BS1F	3001179
BS2F	3001177
BS3F - BS4F	3001178

Gas train accessories

SEAL CONTROL KIT

To test the valve seals on the gas train, (except for the model with Multibloc MBC 65/1) a special "seal control kit" is available.


GAS TRAIN	CODE	CODE	
UAS IRAIN	for 50Hz operation	for 60Hz operation	
MB/1 type	3010123	20050030	

Specification

DESIGNATION OF SERIES

A specific index guides your choice of burner from the various models available in the RS/M C13 series. Below is a clear and detailed specification description of the product.

AVAILABLE BURNER MODELS

BURNER ELECTRICAL		HEAT OUTPUT		TOTAL ELECTRICAL		
MODELS	SUPPLY	(kW)	NATURAL GAS (Nm³/h)	POWER (kW)	CERTIFICATION	NOTE
BS1F	1/220-230/50-60	16 - 52	1.6 - 5.2	0.135 (50 Hz) - 0.165 (60 Hz)	CE-0085AQ0409	(1)
BS2F	1/220-230/50-60	35 - 91	3.5 - 9.1	0.155 (50 Hz) - 0.200 (60 Hz)	CE-0085AQ0409	(1)
BS3F	1/220-230/50-60	65 - 200	6.5 - 20	0.355 (50 Hz) - 0.485 (60 Hz)	CE-0085AQ0409	(1)
BS4F	1/220-230/50-60	110 - 250	11 - 25	0.420 (50 Hz) - 0.600 (60 Hz)	CE-0085AQ0409	(1)

Net calorific value G20: 10 kWh/Nm 3 - Density: 0,71 kg/Nm 3 . The burners of BS series are in according to EN 676. (1) With plug and socket.

SPECIFICATION

STATE OF SUPPLY

Monoblock, gas burners, completely automatic, one stage operation, made up of:

- Fan with forward curve blades
- Cover lined with sound-proofing material
- Air damper, completely closed in stand by, with external adjustment, with no need to remove the cover
- Single phase electric motor 220-230V, 50-60Hz
- Combustion head fitted with:
 - stainless steel head cone, resistant to high temperatures
 - ignition electrodes
 - ionisation probe
 - gas distributor
 - flame stability disk
- Flame inspection window
- Adjustable air pressure switch, with graduated selector, to guarantee burner lock out in the case of insufficient combustible air
- Microprocessor-based burner safety control box, with diagnostic and remote reset functions
- Protection filter against radio interference (included into burner safety control box)
- IP XOD (IP 40) electric protection level.

Standard equipment:

- Flange insulation screen
- Screw and nut for flange
- Screw and nuts for flange to be fixed to the heat generator
- 7-pin plug
- Remote control release kit
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue

Conforming to:

- 2004/108 EC Directive (electromagnetic compatibility)
- 2006/95 EC Directive (low voltage)
- 2009/142 EC Directive (gas)
- 2006/42 EC Directive (machine)
- EN 676 (gas burners)
- EN 746-2 Standard (for the part of the working field that is depressurised)

Available accessories to be ordered separately:

- Extended head kit
- Alternative extended head kit
- LPG kit
- Town gas kit
- Ground fault interrupter kit
- Multibloc rotation kit
- 7-pin plug kit
- PC interface kit
- Seal control kit

Riello Burners a world of experience in every burner we sell.

[1]

[2]

- [1] BURNERS PRODUCTION PLANT S. PIETRO, LEGNAGO (VERONA) - ITALIA
- [2] HEADQUARTER BURNERS DIVISION S. PIETRO, LEGNAGO (VERONA) ITALIA

Across the world, Riello sets the standard in reliable and high efficiency burner technology.

With burner capacity from 5 kW to 48 MW, Riello gas, oil, dual fuel and Low Nox burners deliver unbeatable performance across the full range of residential and commercial heating applications, as well as in industrial processes.

With headquarter in Legnago, Italy, Riello has been manufacturing premium quality burners for over 90 year. The manufacturing plant is equipped with the most innovative systems of assembling lines and modern manufacturing cells for a quick and flexible response to the market.

Besides, the Riello Combustion Research Centre, located in Angiari, Italy, represents one of the most modern facility in Europe and one of the most advanced in the world for the development of the combustion technology.

Today, the company's presence on worldwide markets is distinguished by a well-constructed and efficient sales network, alongside many important Training Centres located in various countries to meet its customers' needs. Riello has 13 operational branches abroad (in Europe, America and Asia), with customers in over 60 countries.

RIELLO S.p.A. – 37045 Legnago (VR) – Italy tel. +39 0442 630111 – fax: +39 0442 21980 www.riello.com

